

ELECTROMAGNETIC FLOW METER

Electromagnetic flow measurement is based on Faraday's Law of Induction. The law states that voltage is induced across a conductor moving through a magnetic field. The functional principle of electromagnetic measuring devices is also based on this law of nature. An emf is generated across a conductor moving in a magnetic field. This emf is directly proportional to the flux density, velocity of conductor and length of the conductor. This principle is used for flow measurement through electromagnetic flow meter. The flowing liquid itself is a conductor and its average velocity is the velocity of conductor.

 \mathbf{E} = B.V.D.

Where

E = Induced emf proportional to velocity.

B = Magnetic flux Density

V = Average velocity of the media

D = Distance between two electrodes or Practically the diameter of the flow sensor

Since the Flux Density and diameter of the flow sensor are fixed for given combination Theemf becomes proportional to average velocity only and in turn the volumetric flow rate.

Electromagnetic flow meters are based on the laws of electromagnetic induction, conductive liquids are the only liquids for which flow can be detected. Whether it is a conductive liquid or not is determined by the presence of electrical conductivity. Minimum conductivity of fluid should be $0.5~\mu S/cm$

Types:

Electromagnetic Flow Meter - Full Bore - Flanged Type

Electromagnetic Flow Meter - Full Bore - Wafer Type

Specifications:

• Line Size: 15 NB to 350 NB (For higher size contact factory)

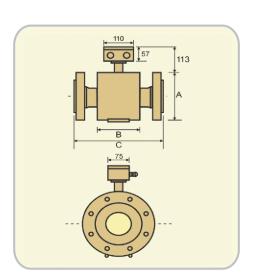
• Lining: PTFE / Hard Rubber / PFA

• Electrode: SS316 / SS 316L / HAST-C / Tantalum / Titanium

Flange: CS / SS 304 / SS 316 / SS 316L
 Body: MS / SS 304 / SS 316 / SS 316L
 Flow Transmitter: Integral / Remote

Supply: 230VAC / 24VDC

Electromagnetic Flow Meter - Full Bore Meter Dimensions (mm)


Table for Meter dimensions SROAT 1000 Plus (mm)			
DN (mm)	Α	В	С
25	108	100	200
32	117	100	200
40	127	105	200
50	152	99	200
65	177	92	200
80	190	89	200
100	228	135	250
125	254	135	250
150	279	170	300
200	343	205	350
250	406	240	400
300	482	290	500
350	533	290	550

Advantage:

- Unaffected by the temperature, pressure, density, or viscosity of the liquid.
- Able to detect liquids that include contaminants (solids, air bubbles)
- There is no pressure loss
- No moving parts (improves reliability)

Disadvantage:

- · Cannot detect gases and liquids without electrical conductivity
- A short section of straight pipe is required

Note:

All dimensions are in mm

Dimensions are with ANSI B 16.5, Class 150 Flags with terminal box. Dimensions ${}^{\rm '}{\rm C'}$ is without earth rings.

Standard Flanges:

- ANSI B 16.5, Class 150 up to DN 150
- BS 10, Table F From DN 200 and onwards